Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Nat Commun ; 15(1): 2511, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509069

RESUMO

In situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. There has been a surge of multiplexed RNA in situ mapping techniques but their application to human tissues has been limited due to their large size, general lower tissue quality and high autofluorescence. Here we report DART-FISH, a padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections. We introduce an omni-cell type cytoplasmic stain that substantially improves the segmentation of cell bodies. Our enzyme-free isothermal decoding procedure allows us to image 121 genes in large sections from the human neocortex in <10 h. We successfully recapitulated the cytoarchitecture of 20 neuronal and non-neuronal subclasses. We further performed in situ mapping of 300 genes on a diseased human kidney, profiled >20 healthy and pathological cell states, and identified diseased niches enriched in transcriptionally altered epithelial cells and myofibroblasts.


Assuntos
Perfilação da Expressão Gênica , RNA , Humanos , RNA/genética , Hibridização In Situ , Perfilação da Expressão Gênica/métodos , Transcriptoma , Citosol
2.
JCI Insight ; 9(6)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358826

RESUMO

Neuroblastoma is an aggressive pediatric cancer with a high rate of metastasis to the BM. Despite intensive treatments including high-dose chemotherapy, the overall survival rate for children with metastatic neuroblastoma remains dismal. Understanding the cellular and molecular mechanisms of the metastatic tumor microenvironment is crucial for developing new therapies and improving clinical outcomes. Here, we used single-cell RNA-Seq to characterize immune and tumor cell alterations in neuroblastoma BM metastases by comparative analysis with patients without metastases. Our results reveal remodeling of the immune cell populations and reprogramming of gene expression profiles in the metastatic niche. In particular, within the BM metastatic niche, we observed the enrichment of immune cells, including tumor-associated neutrophils, macrophages, and exhausted T cells, as well as an increased number of Tregs and a decreased number of B cells. Furthermore, we highlighted cell communication between tumor cells and immune cell populations, and we identified prognostic markers in malignant cells that are associated with worse clinical outcomes in 3 independent neuroblastoma cohorts. Our results provide insight into the cellular, compositional, and transcriptional shifts underlying neuroblastoma BM metastases that contribute to the development of new therapeutic strategies.


Assuntos
Medula Óssea , Neuroblastoma , Humanos , Criança , Medula Óssea/patologia , Neuroblastoma/genética , Análise de Célula Única , Microambiente Tumoral
3.
Genome Biol ; 25(1): 35, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273415

RESUMO

Targeted spatial transcriptomics hold particular promise in analyzing complex tissues. Most such methods, however, measure only a limited panel of transcripts, which need to be selected in advance to inform on the cell types or processes being studied. A limitation of existing gene selection methods is their reliance on scRNA-seq data, ignoring platform effects between technologies. Here we describe gpsFISH, a computational method performing gene selection through optimizing detection of known cell types. By modeling and adjusting for platform effects, gpsFISH outperforms other methods. Furthermore, gpsFISH can incorporate cell type hierarchies and custom gene preferences to accommodate diverse design requirements.


Assuntos
Perfilação da Expressão Gênica , Técnicas Genéticas , Análise de Célula Única , Transcriptoma , Análise de Sequência de RNA
4.
Genome Med ; 16(1): 1, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281962

RESUMO

BACKGROUND: Despite therapeutic advances, once a cancer has metastasized to the bone, it represents a highly morbid and lethal disease. One third of patients with advanced clear cell renal cell carcinoma (ccRCC) present with bone metastasis at the time of diagnosis. However, the bone metastatic niche in humans, including the immune and stromal microenvironments, has not been well-defined, hindering progress towards identification of therapeutic targets. METHODS: We collected fresh patient samples and performed single-cell transcriptomic profiling of solid metastatic tissue (Bone Met), liquid bone marrow at the vertebral level of spinal cord compression (Involved), and liquid bone marrow from a different vertebral body distant from the tumor site but within the surgical field (Distal), as well as bone marrow from patients undergoing hip replacement surgery (Benign). In addition, we incorporated single-cell data from primary ccRCC tumors (ccRCC Primary) for comparative analysis. RESULTS: The bone marrow of metastatic patients is immune-suppressive, featuring increased, exhausted CD8 + cytotoxic T cells, T regulatory cells, and tumor-associated macrophages (TAM) with distinct transcriptional states in metastatic lesions. Bone marrow stroma from tumor samples demonstrated a tumor-associated mesenchymal stromal cell population (TA-MSC) that appears to be supportive of epithelial-to mesenchymal transition (EMT), bone remodeling, and a cancer-associated fibroblast (CAFs) phenotype. This stromal subset is associated with poor progression-free and overall survival and also markedly upregulates bone remodeling through the dysregulation of RANK/RANKL/OPG signaling activity in bone cells, ultimately leading to bone resorption. CONCLUSIONS: These results provide a comprehensive analysis of the bone marrow niche in the setting of human metastatic cancer and highlight potential therapeutic targets for both cell populations and communication channels.


Assuntos
Carcinoma de Células Renais , Humanos , Carcinoma de Células Renais/genética , Células Estromais/patologia , Transdução de Sinais , Perfilação da Expressão Gênica , Análise de Célula Única , Microambiente Tumoral
5.
Nat Genet ; 55(11): 1901-1911, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37904053

RESUMO

Genetic mutations accumulate in an organism's body throughout its lifetime. While somatic single-nucleotide variants have been well characterized in the human body, the patterns and consequences of large chromosomal alterations in normal tissues remain largely unknown. Here, we present a pan-tissue survey of mosaic chromosomal alterations (mCAs) in 948 healthy individuals from the Genotype-Tissue Expression project, augmenting RNA-based allelic imbalance estimation with haplotype phasing. We found that approximately a quarter of the individuals carry a clonally-expanded mCA in at least one tissue, with incidence strongly correlated with age. The prevalence and genome-wide patterns of mCAs vary considerably across tissue types, suggesting tissue-specific mutagenic exposure and selection pressures. The mCA landscapes in normal adrenal and pituitary glands resemble those in tumors arising from these tissues, whereas the same is not true for the esophagus and skin. Together, our findings show a widespread age-dependent emergence of mCAs across normal human tissues with intricate connections to tumorigenesis.


Assuntos
Aberrações Cromossômicas , Neoplasias , Humanos , Mutação , Neoplasias/genética , Desequilíbrio Alélico , Esôfago
6.
Cancer Cell ; 41(10): 1803-1816.e8, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738974

RESUMO

Unlike many other hematologic malignancies, Richter syndrome (RS), an aggressive B cell lymphoma originating from indolent chronic lymphocytic leukemia, is responsive to PD-1 blockade. To discover the determinants of response, we analyze single-cell transcriptome data generated from 17 bone marrow samples longitudinally collected from 6 patients with RS. Response is associated with intermediate exhausted CD8 effector/effector memory T cells marked by high expression of the transcription factor ZNF683, determined to be evolving from stem-like memory cells and divergent from terminally exhausted cells. This signature overlaps with that of tumor-infiltrating populations from anti-PD-1 responsive solid tumors. ZNF683 is found to directly target key T cell genes (TCF7, LMO2, CD69) and impact pathways of T cell cytotoxicity and activation. Analysis of pre-treatment peripheral blood from 10 independent patients with RS treated with anti-PD-1, as well as patients with solid tumors treated with anti-PD-1, supports an association of ZNF683high T cells with response.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Linfócitos T CD8-Positivos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Regulação da Expressão Gênica , Imunoterapia
7.
bioRxiv ; 2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37645998

RESUMO

In situ transcriptomic techniques promise a holistic view of tissue organization and cell-cell interactions. Recently there has been a surge of multiplexed RNA in situ techniques but their application to human tissues and clinical biopsies has been limited due to their large size, general lower tissue quality and high background autofluorescence. Here we report DART-FISH, a versatile padlock probe-based technology capable of profiling hundreds to thousands of genes in centimeter-sized human tissue sections at cellular resolution. We introduced an omni-cell type cytoplasmic stain, dubbed RiboSoma that substantially improves the segmentation of cell bodies. We developed a computational decoding-by-deconvolution workflow to extract gene spots even in the presence of optical crowding. Our enzyme-free isothermal decoding procedure allowed us to image 121 genes in a large section from the human neocortex in less than 10 hours, where we successfully recapitulated the cytoarchitecture of 20 neuronal and non-neuronal subclasses. Additionally, we demonstrated the detection of transcripts as short as 461 nucleotides, including neuropeptides and discovered new cortical layer markers. We further performed in situ mapping of 300 genes on a diseased human kidney, profiled >20 healthy and pathological cell states, and identified diseased niches enriched in transcriptionally altered epithelial cells and myofibroblasts.

8.
Nature ; 619(7970): 585-594, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468583

RESUMO

Understanding kidney disease relies on defining the complexity of cell types and states, their associated molecular profiles and interactions within tissue neighbourhoods1. Here we applied multiple single-cell and single-nucleus assays (>400,000 nuclei or cells) and spatial imaging technologies to a broad spectrum of healthy reference kidneys (45 donors) and diseased kidneys (48 patients). This has provided a high-resolution cellular atlas of 51 main cell types, which include rare and previously undescribed cell populations. The multi-omic approach provides detailed transcriptomic profiles, regulatory factors and spatial localizations spanning the entire kidney. We also define 28 cellular states across nephron segments and interstitium that were altered in kidney injury, encompassing cycling, adaptive (successful or maladaptive repair), transitioning and degenerative states. Molecular signatures permitted the localization of these states within injury neighbourhoods using spatial transcriptomics, while large-scale 3D imaging analysis (around 1.2 million neighbourhoods) provided corresponding linkages to active immune responses. These analyses defined biological pathways that are relevant to injury time-course and niches, including signatures underlying epithelial repair that predicted maladaptive states associated with a decline in kidney function. This integrated multimodal spatial cell atlas of healthy and diseased human kidneys represents a comprehensive benchmark of cellular states, neighbourhoods, outcome-associated signatures and publicly available interactive visualizations.


Assuntos
Perfilação da Expressão Gênica , Nefropatias , Rim , Análise de Célula Única , Transcriptoma , Humanos , Núcleo Celular/genética , Rim/citologia , Rim/lesões , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Transcriptoma/genética , Estudos de Casos e Controles , Imageamento Tridimensional
9.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993340

RESUMO

Targeted spatial transcriptomics hold particular promise in analysis of complex tissues. Most such methods, however, measure only a limited panel of transcripts, which need to be selected in advance to inform on the cell types or processes being studied. A limitation of existing gene selection methods is that they rely on scRNA-seq data, ignoring platform effects between technologies. Here we describe gpsFISH, a computational method to perform gene selection through optimizing detection of known cell types. By modeling and adjusting for platform effects, gpsFISH outperforms other methods. Furthermore, gpsFISH can incorporate cell type hierarchies and custom gene preferences to accommodate diverse design requirements.

10.
Nat Commun ; 14(1): 663, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750562

RESUMO

The treatment of low-risk primary prostate cancer entails active surveillance only, while high-risk disease requires multimodal treatment including surgery, radiation therapy, and hormonal therapy. Recurrence and development of metastatic disease remains a clinical problem, without a clear understanding of what drives immune escape and tumor progression. Here, we comprehensively describe the tumor microenvironment of localized prostate cancer in comparison with adjacent normal samples and healthy controls. Single-cell RNA sequencing and high-resolution spatial transcriptomic analyses reveal tumor context dependent changes in gene expression. Our data indicate that an immune suppressive tumor microenvironment associates with suppressive myeloid populations and exhausted T-cells, in addition to high stromal angiogenic activity. We infer cell-to-cell relationships from high throughput ligand-receptor interaction measurements within undissociated tissue sections. Our work thus provides a highly detailed and comprehensive resource of the prostate tumor microenvironment as well as tumor-stromal cell interactions.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Próstata/patologia , Microambiente Tumoral , Perfilação da Expressão Gênica , Neoplasias da Próstata/genética
11.
Nat Cell Biol ; 25(3): 390-403, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36717627

RESUMO

The glandular stomach is composed of two regenerative compartments termed corpus and antrum, and our understanding of the transcriptional networks that maintain these tissues is incomplete. Here we show that cell types with equivalent functional roles in the corpus and antrum share similar transcriptional states including the poorly characterized stem cells of the isthmus region. To further study the isthmus, we developed a monolayer two-dimensional (2D) culture system that is continually maintained by Wnt-responsive isthmus-like cells capable of differentiating into several gastric cell types. Importantly, 2D cultures can be converted into conventional three-dimensional organoids, modelling the plasticity of gastric epithelial cells in vivo. Finally, we utilized the 2D culture system to show that Sox2 is both necessary and sufficient to generate enterochromaffin cells. Together, our data provide important insights into gastric homeostasis, establish a tractable culture system to capture isthmus cells and uncover a role for Sox2 in enterochromaffin cells.


Assuntos
Mucosa Gástrica , Estômago , Mucosa Gástrica/metabolismo , Diferenciação Celular , Células-Tronco/metabolismo , Homeostase
12.
Nat Biotechnol ; 41(3): 417-426, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36163550

RESUMO

Genome instability and aberrant alterations of transcriptional programs both play important roles in cancer. Single-cell RNA sequencing (scRNA-seq) has the potential to investigate both genetic and nongenetic sources of tumor heterogeneity in a single assay. Here we present a computational method, Numbat, that integrates haplotype information obtained from population-based phasing with allele and expression signals to enhance detection of copy number variations from scRNA-seq. Numbat exploits the evolutionary relationships between subclones to iteratively infer single-cell copy number profiles and tumor clonal phylogeny. Analysis of 22 tumor samples, including multiple myeloma, gastric, breast and thyroid cancers, shows that Numbat can reconstruct the tumor copy number profile and precisely identify malignant cells in the tumor microenvironment. We identify genetic subpopulations with transcriptional signatures relevant to tumor progression and therapy resistance. Numbat requires neither sample-matched DNA data nor a priori genotyping, and is applicable to a wide range of experimental settings and cancer types.


Assuntos
Mieloma Múltiplo , Transcriptoma , Humanos , Transcriptoma/genética , Variações do Número de Cópias de DNA/genética , Haplótipos/genética , Filogenia , Análise de Célula Única/métodos , Microambiente Tumoral
13.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394263

RESUMO

SUMMARY: scFates provides an extensive toolset for the analysis of dynamic trajectories comprising tree learning, feature association testing, branch differential expression and with a focus on cell biasing and fate splits at the level of bifurcations. It is meant to be fully integrated into the scanpy ecosystem for seamless analysis of trajectories from single-cell data of various modalities (e.g. RNA and ATAC). AVAILABILITY AND IMPLEMENTATION: scFates is released as open-source software under the BSD 3-Clause 'New' License and is available from the Python Package Index at https://pypi.org/project/scFates/. The source code is available on GitHub at https://github.com/LouisFaure/scFates/. Code reproduction and tutorials on published datasets are available on GitHub at https://github.com/LouisFaure/scFates_notebooks. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Ecossistema , Software
14.
Nat Methods ; 19(12): 1622-1633, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36424441

RESUMO

Tissue function depends on cellular organization. While the properties of individual cells are increasingly being deciphered using powerful single-cell sequencing technologies, understanding their spatial organization and temporal evolution remains a major challenge. Here, we present Image-seq, a technology that provides single-cell transcriptional data on cells that are isolated from specific spatial locations under image guidance, thus preserving the spatial information of the target cells. It is compatible with in situ and in vivo imaging and can document the temporal and dynamic history of the cells being analyzed. Cell samples are isolated from intact tissue and processed with state-of-the-art library preparation protocols. The technique therefore combines spatial information with highly sensitive RNA sequencing readouts from individual, intact cells. We have used both high-throughput, droplet-based sequencing as well as SMARTseq-v4 library preparation to demonstrate its application to bone marrow and leukemia biology. We discovered that DPP4 is a highly upregulated gene during early progression of acute myeloid leukemia and that it marks a more proliferative subpopulation that is confined to specific bone marrow microenvironments. Furthermore, the ability of Image-seq to isolate viable, intact cells should make it compatible with a range of downstream single-cell analysis tools including multi-omics protocols.


Assuntos
Diagnóstico por Imagem , Leucemia , Humanos , Análise de Sequência de RNA , Contagem de Células , Biblioteca Gênica , Microambiente Tumoral
15.
Sci Adv ; 8(41): eabn8367, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36223459

RESUMO

Schizophrenia is one of the most widespread and complex mental disorders. To characterize the impact of schizophrenia, we performed single-nucleus RNA sequencing (snRNA-seq) of >220,000 neurons from the dorsolateral prefrontal cortex of patients with schizophrenia and matched controls. In addition, >115,000 neurons were analyzed topographically by immunohistochemistry. Compositional analysis of snRNA-seq data revealed a reduction in abundance of GABAergic neurons and a concomitant increase in principal neurons, most pronounced for upper cortical layer subtypes, which was substantiated by histological analysis. Many neuronal subtypes showed extensive transcriptomic changes, the most marked in upper-layer GABAergic neurons, including down-regulation in energy metabolism and up-regulation in neurotransmission. Transcription factor network analysis demonstrated a developmental origin of transcriptomic changes. Last, Visium spatial transcriptomics further corroborated upper-layer neuron vulnerability in schizophrenia. Overall, our results point toward general network impairment within upper cortical layers as a core substrate associated with schizophrenia symptomatology.


Assuntos
Esquizofrenia , Neurônios GABAérgicos/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , RNA Nuclear Pequeno/metabolismo , Esquizofrenia/patologia , Fatores de Transcrição/metabolismo
16.
Nat Commun ; 13(1): 5747, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180422

RESUMO

Clear cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer in adults. When ccRCC is localized to the kidney, surgical resection or ablation of the tumor is often curative. However, in the metastatic setting, ccRCC remains a highly lethal disease. Here we use fresh patient samples that include treatment-naive primary tumor tissue, matched adjacent normal kidney tissue, as well as tumor samples collected from patients with bone metastases. Single-cell transcriptomic analysis of tumor cells from the primary tumors reveals a distinct transcriptional signature that is predictive of metastatic potential and patient survival. Analysis of supporting stromal cells within the tumor environment demonstrates vascular remodeling within the endothelial cells. An in silico cell-to-cell interaction analysis highlights the CXCL9/CXCL10-CXCR3 axis and the CD70-CD27 axis as potential therapeutic targets. Our findings provide biological insights into the interplay between tumor cells and the ccRCC microenvironment.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Adulto , Carcinoma de Células Renais/patologia , Células Endoteliais/metabolismo , Humanos , Rim/metabolismo , Neoplasias Renais/patologia , Transcriptoma , Microambiente Tumoral/genética
17.
Cell Rep Med ; 3(6): 100657, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35688160

RESUMO

Understanding the complete immune cell composition of human neuroblastoma (NB) is crucial for the development of immunotherapeutics. Here, we perform single-cell RNA sequencing (scRNA-seq) on 19 human NB samples coupled with multiplex immunohistochemistry, survival analysis, and comparison with normal fetal adrenal gland data. We provide a comprehensive immune cell landscape and characterize cell-state changes from normal tissue to NB. Our analysis reveals 27 immune cell subtypes, including distinct subpopulations of myeloid, NK, B, and T cells. Several different cell types demonstrate a survival benefit. In contrast to adult cancers and previous NB studies, we show an increase in inflammatory monocyte cell state when contrasting normal and tumor tissue, while no differences in cytotoxicity and exhaustion score for T cells, nor in Treg activity, are observed. Our receptor-ligand interaction analysis reveals a highly complex interactive network of the NB microenvironment from which we highlight several interactions that we suggest for future therapeutic studies.


Assuntos
Neuroblastoma , Adulto , Humanos , Imuno-Histoquímica , Neuroblastoma/genética , Microambiente Tumoral/genética
19.
J Hepatol ; 76(5): 1127-1137, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35074474

RESUMO

BACKGROUND & AIMS: Myeloid cells are key regulators of cirrhosis, a major cause of mortality worldwide. Because stromal cells can modulate the functionality of myeloid cells in vitro, targeting stromal-myeloid interactions has become an attractive potential therapeutic strategy. We aimed to investigate how human liver stromal cells impact myeloid cell properties and to understand the utility of a stromal-myeloid coculture system to study these interactions in the context of cirrhosis. METHODS: Single-cell RNA-sequencing analyses of non-cirrhotic (n = 7) and cirrhotic (n = 5) human liver tissue were correlated to the bulk RNA-sequencing results of in vitro cocultured human CD14+ and primary liver stromal cells. Complimentary mechanistic experiments and flow cytometric analysis were performed on human liver stromal-myeloid coculture systems. RESULTS: We found that stromal-myeloid coculture reduces the frequency CD14+ cell subsets transcriptionally similar to liver macrophages, showing that stromal cells inhibit the maturation of monocytes into macrophages. Stromal cells also influenced in vitro macrophage differentiation by skewing away from cirrhosis-linked CD9+ scar-associated macrophage-like cells and towards CD163+ Kupffer cell-like macrophages. We identify IL-6 production as a mechanism by which stromal cells limit CD9+ macrophage differentiation and find that local IL-6 levels are decreased in early-stage human liver disease compared to healthy liver tissue, suggesting a protective role for local IL-6 in the healthy liver. CONCLUSIONS: Our work reveals an unanticipated role for liver stromal cells in impeding the maturation and altering the differentiation of macrophages and should prompt investigations into the role of local IL-6 production in the pathogenesis of liver disease. These studies provide a framework for investigating macrophage-stromal interactions during cirrhosis. LAY SUMMARY: The impact of human liver stromal cells on myeloid cell maturation and differentiation in liver disease is incompletely understood. In this study, we present a mechanistic analysis using a primary in vitro human liver stromal-myeloid coculture system that is translated to liver disease using single-cell RNA sequencing analysis of cirrhotic and non-cirrhotic human liver tissue. Our work supports a role for stromal cell contact in restricting macrophage maturation and for stromal-derived IL-6 in limiting the differentiation of a cirrhotic macrophage subset.


Assuntos
Interleucina-6 , Hepatopatias , Diferenciação Celular , Humanos , Cirrose Hepática/etiologia , Hepatopatias/patologia , Macrófagos/patologia , Monócitos/patologia , RNA , Células Estromais/patologia
20.
Nat Biotechnol ; 40(3): 345-354, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34650268

RESUMO

Single-molecule spatial transcriptomics protocols based on in situ sequencing or multiplexed RNA fluorescent hybridization can reveal detailed tissue organization. However, distinguishing the boundaries of individual cells in such data is challenging and can hamper downstream analysis. Current methods generally approximate cells positions using nuclei stains. We describe a segmentation method, Baysor, that optimizes two-dimensional (2D) or three-dimensional (3D) cell boundaries considering joint likelihood of transcriptional composition and cell morphology. While Baysor can take into account segmentation based on co-stains, it can also perform segmentation based on the detected transcripts alone. To evaluate performance, we extend multiplexed error-robust fluorescence in situ hybridization (MERFISH) to incorporate immunostaining of cell boundaries. Using this and other benchmarks, we show that Baysor segmentation can, in some cases, nearly double the number of cells compared to existing tools while reducing segmentation artifacts. We demonstrate that Baysor performs well on data acquired using five different protocols, making it a useful general tool for analysis of imaging-based spatial transcriptomics.


Assuntos
Análise de Célula Única , Transcriptoma , Perfilação da Expressão Gênica/métodos , Hibridização in Situ Fluorescente/métodos , RNA/análise , Análise de Célula Única/métodos , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...